ЧАСТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «РЕГИОНАЛЬНЫЙ НЕФТЕГАЗОВЫЙ КОЛЛЕДЖ»

PACCMOTPEHO:

На заседании методического совета Протокол № <u>2</u> от «21» _08_ 2023 г.

УТВЕРЖДАЮ:

Директор ЧПОУ «Региональный нефтегазовый колледж»

А.К. Курбанмагомедов Приказ № 5/2 от «23» 08 2023 г.

"РЕГИОНАЛЬНЫЙ З НЕФТЕГАЗОВЫЙ КОЛЛЕДЖ"

Фонд оценочных средств

для проведения текущего контроля успеваемости, промежуточной аттестации обучающихся по учебной дисциплине

ОП.06 «Гидравлика»

по специальности

21.02.03 Сооружение и эксплуатация газонефтепроводов и газонефтехранилищ по программе подготовки специалистов среднего звена (ППССЗ) на базе основного общего образования форма обучения: очная, заочная

Фонд оценочных средств по учебной дисциплине ОП.06 «Гидравлика» разработан на основе Федерального государственного образовательного стандарта (далее - ФГОС) по специальности 21.02.03 «Сооружение и эксплуатация газонефтепроводов и газонефтехранилищ» среднего профессионального образования (далее - СПО), утвержденной приказом Министерства образования и науки РФ от 26 июля 2022 г. № 610.

Квалификация - техник.

Организация-разработчик: ЧПОУ «Региональный нефтегазовый колледж»

Разработчик: ЧПОУ «Региональный нефтегазовый колледж»

Оглавление

cce
4
КИН
.5
ιий
6
ий,
ия
7
ПЫ
.53

1. Перечень компетенций с указанием этапов их формирования в процессе освоения основной образовательной программы

Основной задачей оценочных средств является контроль и управление процессом приобретения студентами необходимых знаний и умений, определенных стандартом. Оценочные средства для контроля знаний и умений, формируемых дисциплиной ОП.16 «Гидравлика», оцениваемые компоненты компетенций отражены в таблице.

№ п/п	Контролируемые разделы (темы) дисциплины*	Код контролируемой компетенции (или ее части)	Наименование оценочного средства
	Раздел 1		
1	Тема 1.1	ОК 1-9, ПК 1.11.4	Лабораторная работа №1
	Раздел 2		
2	Тема 2.1	ОК 1-9, ПК 1.11.4	Устный опрос
3	Тема 2.2	ОК 1-9, ПК 1.11.4	Практическая работа №1
	Раздел 3		
4	Тема 3.1	ОК 1-9, ПК 1.11.4	Устный опрос
5	Тема 3.2	ОК 1-9, ПК 1.11.4	Лабораторная работа №2 Лабораторная работа №3 Практическая работа №2 Практическая работа №2
6	Тема 3.3	ОК 1-9, ПК 1.11.4	Лабораторная работа №4 Практическая работа №4
7	Тема 3.4	ОК 1-9, ПК 1.11.4	Устный опрос Лабораторная работа №5
	Раздел 4		
8	Тема 4.1	ОК 1-9, ПК 1.11.4	Устный опрос
9	Тема 4.2	ОК 1-9, ПК 1.11.4	Устный опрос

2. Описание перечня оценочных средств и критериев оценивания 3. компетенций на различных этапах их формирования

№ п/п	Наименование оценочного средства	Краткая характеристика оценочного средства	Представление оценочного средства в фонде
1	2	3	4
1	Реферат	Продукт самостоятельной работы студента, представляющий собой краткое изложение в письменном виде полученных результатов теоретического анализа определенной научной (учебноисследовательской) темы, где автор раскрывает суть исследуемой проблемы,	Темы рефератов

		приводит различные точки зрения, а	
		также собственные взгляды на нее.	
2	Доклад, сообщение	Продукт самостоятельной работы	Темы докладов,
		студента, представляющий собой	сообщений
		публичное выступление по	
		представлению полученных результатов	
		решения определенной учебно-	
		практической, учебно-исследовательской	
		или научной темы	
3	Собеседование	Средство контроля, организованное как	Вопросы по
		специальная беседа преподавателя с	темам/разделам
		обучающимся на темы, связанные с	дисциплины
		изучаемой дисциплиной, и рассчитанное	
		на выяснение объема знаний	
		обучающегося по определенному	
		разделу, теме, проблеме и т.п.	
4	Тестирование	Система стандартизированных заданий,	Фонд тестовых
		позволяющая автоматизировать	заданий
		процедуру измерения уровня знаний и	
		умений обучающегося.	

3. Описание шкал оценочных средств и критерия оценивания компетенций на различных этапах их формирования

Критерии оценки зачета:

«зачтено» - при наличии у студента глубоких, исчерпывающих знаний, грамотном и логически стройном построении ответа по основным вопросам дисциплины; при наличии твердых и достаточно полных знаний, логически стройном построении ответа при незначительных ошибках по направлениям, перечисленным при оценке «отлично»; при наличии твердых знаний, изложении ответа с ошибками, уверенно исправленными после наводящих вопросов по изложенным выше вопросам.

«незачтено» - при наличии грубых ошибок в ответе, непонимании сущности излагаемого вопроса, неуверенности и неточности ответов после наводящих вопросов по вопросам изучаемой дисциплины.

Оценка выставляется в экзаменационно - зачетной ведомости.

Критерии оценки коллоквиумов (докладов):

Оценка - «зачет» выставляется студенту, если он показал знание теории, хорошее осмысление основных вопросов темы, умеет при этом раскрывать понятия на различных примерах.

Оценка - «незачет» выставляется, если студент не владеет (или владеет незначительной степени) основным программным материалом в объеме, необходимым для профессиональной деятельности

Критерии оценки контрольной работы:

- Оценка «отлично» выставляется студенту, если ответ полностью соответствует данной

теме.

- Оценка «хорошо» ставится студенту, если ответ верный, но допущены некоторые неточности;
- Оценка «удовлетворительно» ставится студенту, если ответ является неполным и имеет существенные логические несоответствия;
- оценка «неудовлетворительно» если тема не раскрыта.

Критерии оценки тестирования:

Оценка - «зачет» выставляется студенту, если большая часть ответов (больше 60%) верна.

Оценка - «**незачет**» выставляется студенту, если большая часть ответов (больше 60%) не верна

Критерии оценки реферата:

- -Оценка **«отлично»** выставляется студенту, если ответ аргументирован, обоснован и дана самостоятельная оценка изученного материала;
- Оценка **«хорошо»** ставится студенту, если ответ аргументирован, последователен, но допущены некоторые неточности;
- Оценка **«удовлетворительно»** ставится студенту, если ответ является неполным и имеет существенные логические несоответствия;
- Оценка **«неудовлетворительно»** если в ответе отсутствует аргументация, тема не раскрыта.

Критерии и шкала оценивания уровней освоения компетенций

Шкала	Уровень	Результат освоенности компетенции
оценивания	освоенности	
	компетенции	
отлично	высокий	обучающийся овладел элементами компенсации «знать»,
		«уметь», проявил всесторонние и глубокие знания
		программного материала по дисциплине, освоил
		основную и дополнительную литературу, обнаружил
		творческие способности в понимании, изложении и
		практическом исполнении усвоенных знаний.
хорошо	базовый	обучающийся овладел элементами компетенции «знать»
		и «уметь», проявил полное знание программного
		материала по дисциплине, освоил основную
		рекомендованную литературу, обнаружил стабильный
		характер знаний и умений и проявил способности к их
		самостоятельному применению и обновлению в ходе
		последующего обучения и практической деятельности.
удовлетворительн	основной	обучающийся овладел элементами компетенции «знать»,
0		проявил знания основного программного материала по
		дисциплине в объеме, необходимом для последующего
		обучения и предстоящей практической деятельности,
		изучил основную рекомендованную литературу,
		допустил неточности в ответе на экзамене, но в
		основном обладает необходимыми знаниями для их
		устранения при корректировке со стороны экзаменатора.
неудовлетворитель	компетенции не	студент не овладел ни одним из элементов компетенции,

НО	сформированы	обнаружил существенные пробелы в знании основного
		программного материала по дисциплине, допустил
		принципиальные ошибки при применении теоретических
		знаний, которые не позволяют ему продолжить обучение или
		приступить к практической деятельности без дополнительной
		подготовки по данной дисциплине.

4. Оценочные материалы для оценивания знаний и умений, характеризующих этапы формирования компетенций в процессе освоения основной образовательной программы

Промежуточная аттестация по дисциплине «Гидравлика» осуществляется в форме <u>экзамена</u>. Условием допуска к <u>экзамену</u> являются <u>положительные оценки</u> по всем лабораторным работам, самостоятельным и контрольным работам. Экзамен проводится в устной работе и в форме выполнения практических заданий.

Условием положительной аттестации по дисциплине <u>на экзамене</u> является положительная оценка освоения всех умений и знаний по всем контролируемым показателям.

В ходе освоения учебной дисциплины используются следующие виды текущего контроля успеваемости: <u>входной контроль</u>, <u>лабораторная работа</u>, <u>практическая работа</u>.

Задание 1. Практические работы

Описание технологии выполнения практических работ приводится в методических указаниях.

- 1. Решение задач на законы гидростатики
- 2. Применение уравнений гидродинамики при решении задач
- 3. Решение задач на определение потерь напора (давления)
- 4. Расчет простого и сложного трубопровода

Критерии оценки:

Оценка	Критерии
	1. Выполнена работа без ошибок и недочетов;
«Отлично»	2. Допущено не более одного недочета.

	1. Допущено не более одной негрубой ошибки и одного недочета;	
«Хорошо»	2. Допущено не более двух недочетов.	
«Удовлетворите	1. Допущено не более двух грубых ошибок;	
льно»	2. Допущены не более одной грубой и одной негрубой ошибки и	
	одного недочета;	
	3. Допущено не более двух-трех негрубых ошибок;	
	4. Допущены одна негрубая ошибка и три недочета;	
	5. При отсутствии ошибок, но при наличии четырех-пяти недочетов.	
«Неудовлетвори	1. Допущено число ошибок и недочетов превосходящее норму, при	
тельно»	которой может быть выставлена оценка "3";	
	2. Если правильно выполнил менее половины работы.	

Задание 2. Лабораторные работы

Описание технологии выполнения лабораторных работ приводиться в методических указаниях.

- 1. Определение плотности и вязкости нефтепродуктов
- 2. Иллюстрация режимов движения жидкости
- 3. Определение коэффициента гидравлического сопротивления и потери напора в круглой трубе
 - 4. Потери напора при внезапном расширении
 - 5. Воздействие незатопленной струи на преграду

Критерии оценки:

Оценка	Критерии
«Отлично»	 Правильно выполнена работа в полном объеме с соблюдением необходимой последовательности проведения опытов. Все опыты проведены в условиях и режимах, обеспечивающих получение результатов и выводов с наибольшей точностью. Научно грамотно, логично описаны наблюдения и сформированы выводы из опыта. В представленном отчете правильно и аккуратно выполнены все записи, таблицы, рисунки, графики, чертежи, вычисления и сделаны выводы. Проявляются организационно-трудовые умения. Эксперимент осуществляется по плану с учетом техники безопасности и правил
	работы с материалами и оборудованием.

	1. Опыт проводился в условиях, не обеспечивающих достаточной
«Хорошо»	точности измерений.
	2. Было допущено два-три недочета или более одной грубой ошибки и
	одного недочета.
	3. Эксперимент проведен не полностью или в описании наблюдений из
	опыта допущены неточности, выводы сделаны неполные.
	1. Работа выполняется правильно не менее, чем на половину, однако
«Удовлетвори	объем выполненной части таков, что позволяет получить правильные
тельно»	результаты и выводы по основным, принципиально важным задачам
	работы.
	2. Работа по началу опыта проведена с помощью преподавателя; или в
	ходе проведения опыта и измерений допущены ошибки в описании
	наблюдений, формулировании выводов.
	3. Допускает грубую ошибку в ходе эксперимента (в объяснении, в
	оформлении работы, в соблюдении правил техники безопасности при
	работе с материалами и оборудованием), которая исправляется по
	требованию преподавателя.
	1. Выполнил работу не полностью и объем выполненной работы не
«Неудовлетво	позволяет сделать правильных выводов.
рительно»	2. Опыты, измерения, вычисления, наблюдения производились
	неправильно.
	3. В ходе работы и в отчете обнаружились в совокупности все
	недостатки, отмеченные в требованиях к оценке «3»
	4. Допускает две и более грубые ошибки в ходе эксперимента, в
	объяснении, в оформлении, работы, в соблюдении правил техники
	безопасности при работе с веществами и оборудованием, которые
	не
	может исправить даже по требованию преподавателя.

Задание 3. Комплект заданий для тестирования

Вариант 1 (10)

1. Что такое жидкость?

- а) физическое вещество, способное заполнять пустоты;
- б) физическое вещество, способное изменять форму под действием сил;
- в) физическое вещество, способное изменять свой объем;
- г) физическое вещество, способное течь.
- 2. Какая из этих жидкостей не является газообразной?
- а) жидкий азот;
- б) ртуть;
- в) водород;
- г) кислород;
- 3. На какие виды разделяют действующие на жидкость внешние силы?
- а) силы инерции и поверхностного натяжения;
- б) внутренние и поверхностные;
- в) массовые и поверхностные;
- г) силы тяжести и давления.
- 4. Какие силы называются поверхностными?
- а) вызванные воздействием объемов, лежащих на поверхности жидкости;
- б) вызванные воздействием соседних объемов жидкости и воздействием других тел;
- в) вызванные воздействием давления боковых стенок сосуда;
- г) вызванные воздействием атмосферного давления на поверхности тела.
- 5. В каких единицах измеряется давление в системе измерения СИ?
- а) в паскалях;
- б) в джоулях;
- в) в барах;
- г) в стоксах.
- 6. Если давление отсчитывают от относительного нуля, то его называют:
- а) абсолютным;

б) атмосферным;
в) избыточным;
г) давление вакуума.
7. Какое давление обычно показывает манометр?
а) абсолютное;
б) избыточное;
в) атмосферное;
г) давление вакуума
8. Давление определяется
а) отношением силы, действующей на жидкость к площади воздействия;
б) произведением силы, действующей на жидкость на площадь воздействия;
в) отношением площади воздействия к значению силы, действующей на
жидкость;
г) отношением разности действующих усилий к площади воздействия.
9. Вес жидкости в единице объема называют
а) плотностью;
б) удельным весом;
в) удельной плотностью;
г) весом.
10. Сжимаемость жидкости характеризуется
а) коэффициентом Генри;
б) коэффициентом температурного расширения;
в) коэффициентом поджатия;
г) коэффициентом объемного сжатия.
Вариант 2 (10)
1. Динамический коэффициент вязкости обозначается греческой буквой
a) v;
δ) μ;
Β) η;

- Γ) τ.
- 2. Как называются разделы, на которые делится гидравлика?
- а) гидростатика и гидромеханика;
- б) гидромеханика и гидродинамика;
- в) гидростатика и гидродинамика;
- г) гидрология и гидромеханика.
- 3. Уравнение, позволяющее найти гидростатическое давление в любой точке рассматриваемого объема называется
- а) основным уравнением гидростатики;
- б) основным уравнением гидродинамики;
- в) основным уравнением гидромеханики;
- г) основным уравнением гидродинамической теории.
- 4. Закон Паскаля гласит
- а) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково;
- б) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям согласно основному уравнению гидростатики;
- в) давление, приложенное к внешней поверхности жидкости, увеличивается по мере удаления от свободной поверхности;
- г) давление, приложенное к внешней поверхности жидкости равно сумме давлений, приложенных с других сторон рассматриваемого объема жидкости.
- 5. Уравнение Бернулли для идеальной жидкости имеет вид

$$\begin{aligned} \mathbf{a}); \ z_1 + \frac{P_1}{2g} + \frac{\upsilon_1^2}{\rho g} &= z_2 + \frac{P_2}{2g} + \frac{\upsilon_2^2}{\rho g} \\ \mathbf{6}) \ z_1 + \frac{P_2}{\rho g} + \frac{\upsilon_1^2}{2g} &= z_2 + \frac{P_1}{\rho g} + \frac{\upsilon_2^2}{2g} + \sum h; \\ \mathbf{B}) \ z_1 + \frac{P_1}{\rho g} + \frac{\upsilon_1^2}{2g} &= z_2 + \frac{P_2}{\rho g} + \frac{\upsilon_2^2}{2g}; \\ \mathbf{f}) \ z_1 + \frac{\upsilon_1}{\rho g} + \alpha_1 \frac{P_1^2}{2g} &= z_2 + \frac{\upsilon_2}{\rho g} + \alpha_2 \frac{P_2^2}{2g}. \end{aligned}$$

6. Член уравнения Бернулли, обозначаемый буквой z, называется а) геометрической высотой; б) пьезометрической высотой; в) скоростной высотой; г) потерянной высотой. 7. Член уравнения Бернулли, обозначаемый выражением а) пьезометрической высотой; б) скоростной высотой; в) геометрической высотой; г) такого члена не существует. 8. Турбулентный режим движения жидкости это а) режим, при котором частицы жидкости сохраняют определенный строй (движутся послойно); б) режим, при котором частицы жидкости перемещаются в трубопроводе бессистемно; в) режим, при котором частицы жидкости двигаются как послойно так и бессистемно; г) режим, при котором частицы жидкости двигаются послойно только в центре трубопровода. 9. Критическое значение числа Рейнольдса равно a) 2300; б) 3200; в) 4000; г) 4600. 10. При Re < 2300 режим движения жидкости а) кавитационный; б) турбулентный;

в) переходный;

г) ламинарный.

Вариант 3 (10)

- 1. Скорость истечения жидкости через отверстие равна
- $\mathbf{a)} \ \mathbf{v} = \mathbf{\phi}^2 \sqrt{2gH} \ ;$
- 6) $\upsilon = 2\sqrt{\varphi g H}$;
- B) $\upsilon = \sqrt{\varphi 2gH}$;
- $\Gamma) \ \upsilon = \phi \sqrt{2gH} \ .$
- 2. В формуле для определения скорости истечения жидкости через отверстие $\upsilon = \phi \sqrt{2gH}$ буквой H обозначают
- а) дальность истечения струи;
- б) глубину отверстия;
- в) высоту резервуара;
- г) напор жидкости.
- 3. Повышение давления при гидравлическом ударе определяется по формуле
- a) $\triangle P_{y\partial} = \sqrt{\frac{K}{\rho}};$ 6) $\triangle P_{y\partial} = \rho g h;$

- 4. Мощность, которая передается от приводного двигателя к валу насоса называется
- а) полезная мощность;
- б) подведенная мощность;
- в) гидравлическая мощность;
- г) механическая мощность.
- 5. Что такое жидкость?
- а) физическое вещество, способное заполнять пустоты;
- б) физическое вещество, способное изменять форму под действием сил;
- в) физическое вещество, способное изменять свой объем;
- г) физическое вещество, способное течь.
- 6. Какая из этих жидкостей не является газообразной?
- а) жидкий азот;

б) ртуть;
в) водород;
г) кислород;
7. На какие виды разделяют действующие на жидкость внешние силы?
а) силы инерции и поверхностного натяжения;
б) внутренние и поверхностные;
в) массовые и поверхностные;
г) силы тяжести и давления.
8. Какие силы называются поверхностными?
а) вызванные воздействием объемов, лежащих на поверхности жидкости;
б) вызванные воздействием соседних объемов жидкости и воздействием других
тел;
в) вызванные воздействием давления боковых стенок сосуда;
г) вызванные воздействием атмосферного давления на поверхности тела.
9. В каких единицах измеряется давление в системе измерения СИ?
а) в паскалях;
б) в джоулях;
в) в барах;
г) в стоксах.
10. Если давление отсчитывают от относительного нуля, то его называют:
а) абсолютным;
б) атмосферным;
в) избыточным;
г) давление вакуума.
Вариант 4 (10)
1. Какая из этих жидкостей не является капельной?
а) ртуть;
б) керосин;
в) нефть;

- г) азот.
- 2. Идеальной жидкостью называется
- а) жидкость, в которой отсутствует внутреннее трение;
- б) жидкость, подходящая для применения;
- в) жидкость, способная сжиматься;
- г) жидкость, существующая только в определенных условиях.
- 3. Какие силы называются массовыми?
- а) сила тяжести и сила инерции;
- б) сила молекулярная и сила тяжести;
- в) сила инерции и сила гравитационная;
- г) сила давления и сила поверхностная.
- 4. Жидкость находится под давлением. Что это означает?
- а) жидкость находится в состоянии покоя;
- б) жидкость течет;
- в) на жидкость действует сила;
- г) жидкость изменяет форму.
- 5. Если давление отсчитывают от абсолютного нуля, то его называют:
- а) давление вакуума;
- б) атмосферным;
- в) избыточным;
- г) абсолютным.
- 6. Если давление ниже относительного нуля, то его называют:
- а) абсолютным;
- б) атмосферным;
- в) избыточным;
- г) давление вакуума.
- 7. Чему равно атмосферное давление при нормальных условиях?
- a) 100 MΠa;
- б) 100 кПа;
- в) 10 ГПа;

- г) 1000 Па. 8. Массу жидкости заключенную в единице объема называют а) весом; б) удельным весом; в) удельной плотностью; г) плотностью. 9. Сжимаемость это свойство жидкости а) изменять свою форму под действием давления; б) изменять свой объем под действием давления; в) сопротивляться воздействию давления, не изменяя свою форму; г) изменять свой объем без воздействия давления. 10. Кинематический коэффициент вязкости обозначается греческой буквой a) v; δ) μ; в) η; Γ) τ. Вариант 5 (10) 1. Вязкость жидкости при увеличении температуры а) увеличивается; б) уменьшается; в) остается неизменной; г) сначала уменьшается, а затем остается постоянной. 2. Раздел гидравлики, в котором рассматриваются законы равновесия жидкости называется а) гидростатика; б) гидродинамика;
- г) гидравлическая теория равновесия.
- 3. Основное уравнение гидростатического давления записывается в виде
- $a) P = P_{amm} + \rho g h;$

в) гидромеханика;

- 6) $P = P_0 \rho g h$;
- B) $P = P_0 + \rho g h$;
- $\mathbf{r}) P = P_0 + \rho \mathbf{y} h.$

4. Равнодействующая гидростатического давления на цилиндрическую боковую поверхность равна

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
; 6) $F = \sqrt{F_x^2 - F_z^2 - F_y^2}$;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
; Γ) $F = \sqrt[3]{\left(F_x + F_z + F_y\right)^2}$.

5. Расход потока обозначается латинской буквой

- a) *Q*;
- б) *V*;
- $_{\rm B}) P$;
- Γ) H.

6. Уравнение Бернулли для идеальной жидкости имеет вид

a);
$$z_1 + \frac{P_1}{2g} + \frac{v_1^2}{\rho g} = z_2 + \frac{P_2}{2g} + \frac{v_2^2}{\rho g}$$

6)
$$z_1 + \frac{P_2}{\rho g} + \frac{\upsilon_1^2}{2g} = z_2 + \frac{P_1}{\rho g} + \frac{\upsilon_2^2}{2g} + \sum h;$$

B)
$$z_1 + \frac{P_1}{\rho_Z} + \frac{\upsilon_1^2}{2g} = z_2 + \frac{P_2}{\rho_Z} + \frac{\upsilon_2^2}{2g}$$

r)
$$z_1 + \frac{v_1}{\rho g} + \alpha_1 \frac{P_1^2}{2g} = z_2 + \frac{v_2}{\rho g} + \alpha_2 \frac{P_2^2}{2g}$$

7. Член уравнения Бернулли, обозначаемый выражением рег называется

- а) скоростной высотой;
- б) геометрической высотой;
- в) пьезометрической высотой;
- г) потерянной высотой.
- 8. Ламинарный режим движения жидкости это
- а) режим, при котором частицы жидкости перемещаются бессистемно только у стенок трубопровода;
- б) режим, при котором частицы жидкости в трубопроводе перемещаются бессистемно;
- в) режим, при котором жидкость сохраняет определенный строй своих частиц;
- г) режим, при котором частицы жидкости двигаются послойно только у стенок трубопровода.

18

- 9. От каких параметров зависит значение числа Рейнольдса?
- а) от диаметра трубопровода, кинематической вязкости жидкости и скорости движения жидкости;
- б) от расхода жидкости, от температуры жидкости, от длины трубопровода;
- в) от динамической вязкости, от плотности и от скорости движения жидкости;
- г) от скорости движения жидкости, от шероховатости стенок трубопровода, от вязкости жидкости.
- 10. При Re > 2300 режим движения жидкости
- а) ламинарный;
- б) переходный;
- в) турбулентный;
- г) кавитационный.

Вариант 6 (10)

- 1. Какой буквой греческого алфавита обозначается коэффициент гидравлического трения?
- a) γ;
- б) ζ;
- **B**) λ;
- г) μ.
- 2. В формуле для определения скорости истечения жидкости через отверстие $\upsilon = \phi \sqrt{2gH}$ буквой ϕ обозначается
- а) коэффициент скорости;
- б) коэффициент расхода;
- в) коэффициент сжатия;
- г) коэффициент истечения.
- 3. Резкое повышение давления, возникающее в напорном трубопроводе при внезапном торможении рабочей жидкости называется
- а) гидравлическим ударом;
- б) гидравлическим напором;

- в) гидравлическим скачком;
- г) гидравлический прыжок.
- 4. Гидравлическими машинами называют
- а) машины, вырабатывающие энергию и сообщающие ее жидкости;
- б) машины, которые сообщают проходящей через них жидкости механическую энергию, либо получают от жидкости часть энергии и передают ее рабочим органам;
- в) машины, способные работать только при их полном погружении в жидкость с сообщением им механической энергии привода;
- г) машины, соединяющиеся между собой системой трубопроводов, по которым движется рабочая жидкость, отдающая энергию.
- 5. Мощность, которая отводится от насоса в виде потока жидкости под давлением называется
- а) подведенная мощность;
- б) полезная мощность;
- в) гидравлическая мощность;
- г) механическая мощность.
- 6. Какая из этих жидкостей не является капельной?
- а) ртуть;
- б) керосин;
- в) нефть;
- г) азот.
- 7. Идеальной жидкостью называется
- а) жидкость, в которой отсутствует внутреннее трение;
- б) жидкость, подходящая для применения;
- в) жидкость, способная сжиматься;
- г) жидкость, существующая только в определенных условиях.
- 8. Какие силы называются массовыми?
- а) сила тяжести и сила инерции;
- б) сила молекулярная и сила тяжести;

- в) сила инерции и сила гравитационная;
- г) сила давления и сила поверхностная.
- 9. Жидкость находится под давлением. Что это означает?
- а) жидкость находится в состоянии покоя;
- б) жидкость течет;
- в) на жидкость действует сила;
- г) жидкость изменяет форму.
- 10. Если давление отсчитывают от абсолютного нуля, то его называют:
- а) давление вакуума;
- б) атмосферным;
- в) избыточным;
- г) абсолютным.

Вариант 7 (10)

- 1. Идеальной жидкостью называется
- а) жидкость, в которой отсутствует внутреннее трение;
- б) жидкость, подходящая для применения;
- в) жидкость, способная сжиматься;
- г) жидкость, существующая только в определенных условиях.
- 2. Какие силы называются поверхностными?
- а) вызванные воздействием объемов, лежащих на поверхности жидкости;
- б) вызванные воздействием соседних объемов жидкости и воздействием других тел;
- в) вызванные воздействием давления боковых стенок сосуда;
- г) вызванные воздействием атмосферного давления на поверхность жидкости.
- 3. Если давление отсчитывают от абсолютного нуля, то его называют:

- а) давление вакуума; б) атмосферным; в) избыточным; г) абсолютным. 4. Какое давление обычно показывает манометр? а) абсолютное; б) избыточное; в) атмосферное; г) давление вакуума. 5. Массу жидкости заключенную в единице объема называют а) весом; б) удельным весом; в) удельной плотностью; г) плотностью. 6. Сжимаемость жидкости характеризуется а) коэффициентом Генри; б) коэффициентом температурного расширения; в) коэффициентом поджатия; г) коэффициентом объемного сжатия. 7. Вязкость жидкости при увеличении температуры
- а) увеличивается;
- б) уменьшается;
- в) остается неизменной;
- г) сначала уменьшается, а затем остается постоянной.
- 8. Уравнение, позволяющее найти гидростатическое давление в любой точке рассматриваемого объема называется
- а) основным уравнением гидростатики;
- б) основным уравнением гидродинамики;

- в) основным уравнением гидромеханики;
- г) основным уравнением гидродинамической теории.
- 9. Равнодействующая гидростатического давления на цилиндрическую боковую поверхность равна

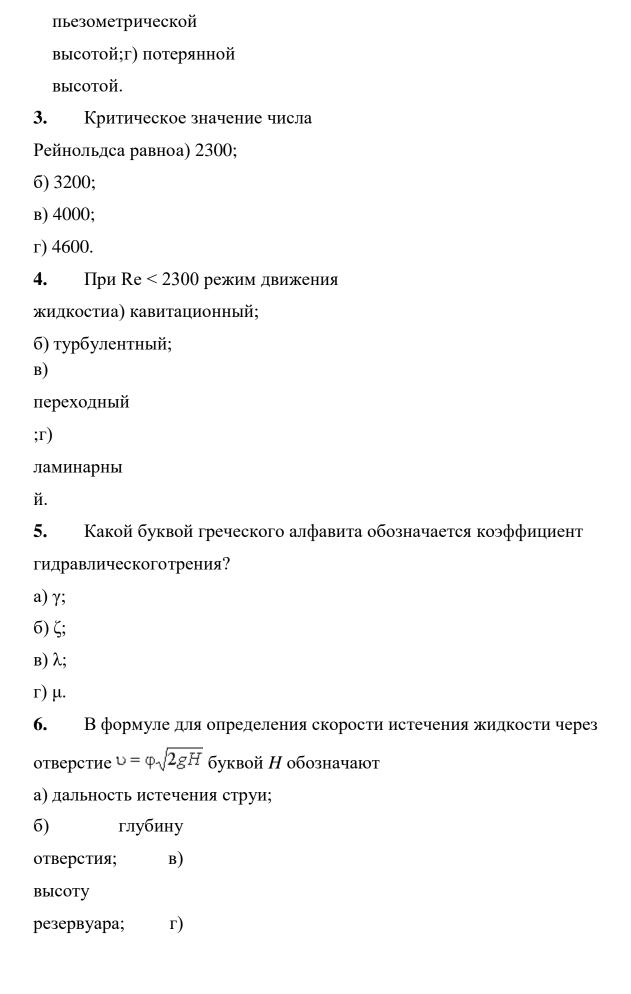
a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
; 6) $F = \sqrt{F_x^2 - F_z^2 - F_y^2}$;

6)
$$F = \sqrt{F_x^2 - F_z^2 - F_y^2}$$
;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
; Γ) $F = \sqrt[3]{\left(F_x + F_z + F_y\right)^2}$.

- 10. Ламинарный режим движения жидкости это
- а) режим, при котором частицы жидкости перемещаются бессистемно только устенок трубопровода;
- б) режим, при котором частицы жидкости в трубопроводе перемещаются бессистемно;
- в) режим, при котором жидкость сохраняет определенный строй своих частиц; г) режим, при котором частицы жидкости двигаются послойно только у стеноктрубопровода.


Вариант 8 (10)

1. Уравнение Бернулли для идеальной жидкости имеет вид

a);
$$z_1 + \frac{P_1}{2g} + \frac{\upsilon_1^2}{\rho g} = z_2 + \frac{P_2}{2g} + \frac{\upsilon_2^2}{\rho g}$$

6) $z_1 + \frac{P_2}{\rho g} + \frac{\upsilon_1^2}{2g} = z_2 + \frac{P_1}{\rho g} + \frac{\upsilon_2^2}{2g} + \sum h$;
B) $z_1 + \frac{P_1}{\rho g} + \frac{\upsilon_1^2}{2g} = z_2 + \frac{P_2}{\rho g} + \frac{\upsilon_2^2}{2g}$;

r)
$$z_1 + \frac{v_1}{\rho g} + \alpha_1 \frac{P_1^2}{2g} = z_2 + \frac{v_2}{\rho g} + \alpha_2 \frac{P_2^2}{2g}$$
.

- Член уравнения Бернулли, обозначаемый выражением называетсяа) скоростной высотой;
- б) геометрической высотой; в)

напор жидкости.

- 7. Гидравлическими машинами называют
- а) машины, вырабатывающие энергию и сообщающие ее жидкости;
- б) машины, которые сообщают проходящей через них жидкости механическую энергию, либо получают от жидкости часть энергии и передают ее рабочим органам;
- в) машины, способные работать только при их полном погружении в жидкость ссообщением им механической энергии привода;
- г) машины, соединяющиеся между собой системой трубопроводов, по которымдвижется рабочая жидкость, отдающая энергию.
- 8. Какая из этих жидкостей не является капельной?а) ртуть;
- б)

керосин

;B)

нефть;

- г) азот.
- 9. На какие виды разделяют действующие на жидкость внешние силы?
- а) силы инерции и поверхностного

натяжения;б) внутренние и поверхностные;

в) массовые и

поверхностные; г) силы

тяжести и давления.

- **10.** В каких единицах измеряется давление в системе измерения СИ?а) в паскалях;
- б) в

джоулях;

в) в барах;

г) в стоксах.

Вариант 9 (10)

1 /
1. Если давление отсчитывают от относительного нуля, то его называют:а)
абсолютным;
б) атмосферным;
в) избыточным;
г) давление вакуума.
2. Чему равно атмосферное давление при нормальных условиях?а) 100
МПа;
б) 100 кПа;
в) 10 ГПа;
г) 1000 Па.
3. Вес жидкости в единице объема называюта) плотностью;
б) удельным весом;
в) удельной плотностью;г) весом.
4. Кинематический коэффициент вязкости обозначается греческой буквой
a) v;
δ) μ;
B) η ;
Γ) τ.
5. Как называются разделы, на которые делится гидравлика?а)
гидростатика и гидромеханика;
б) гидромеханика и гидродинамика; в) гидростатика и гидродинамика; г)
гидрология и гидромеханика.

6. Закон Паскаля гласит

- а) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям одинаково;
- б) давление, приложенное к внешней поверхности жидкости, передается всем точкам этой жидкости по всем направлениям согласно основному уравнению

гидростатики;

- в) давление, приложенное к внешней поверхности жидкости, увеличивается по мере удаления от свободной поверхности;
- г) давление, приложенное к внешней поверхности жидкости равно сумме давлений, приложенных с других сторон рассматриваемого объема жидкости.
- 7. Равнодействующая гидростатического давления на цилиндрическую боковую поверхность равна

a)
$$F = \sqrt{F_x^2 + F_z^2 + F_y^2}$$
; 6) $F = \sqrt{F_x^2 - F_z^2 - F_y^2}$;

6)
$$F = \sqrt{F_x^2 - F_z^2 - F_y^2}$$
;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
;

B)
$$F = \sqrt[3]{F_x^3 + F_z^3 + F_y^3}$$
; Γ) $F = \sqrt[3]{\left(F_x + F_z + F_y\right)^2}$.

- Расход потока обозначается латинской буквойа) Q;
- б) *V*;
- $_{\rm B}) P;$
- г) *H*.
- 9. Турбулентный режим движения жидкости это
 - а) режим, при котором частицы жидкости сохраняют определенный строй (движутся послойно);
 - б) режим, при котором частицы жидкости перемещаются в трубопроводе бессистемно;
 - в) режим, при котором частицы жидкости двигаются как послойно так и бессистемно;
 - г) режим, при котором частицы жидкости двигаются послойно только в центре трубопровода.
 - 10. Какой буквой греческого алфавита обозначается коэффициент гидравлического трения?
 - a) γ;
 - б) ζ;
 - B) λ;
 - г) μ.

- 1. Критическое значение числа Рейнольдса равноа) 2300;
- б) 3200;
- в) 4000;
- г) 4600.
- 2. При Re < 2300 режим движения жидкостиа) кавитационный;
- б) турбулентный;в) переходный; г) ламинарный.
- 3. Скорость истечения жидкости через отверстие равна
 - a) $\upsilon = \varphi^2 \sqrt{2gH}$;
 - $6) \ \upsilon = 2\sqrt{\varphi g H};$
 - B) $\upsilon = \sqrt{\varphi 2gH}$;
 - r) $\upsilon = \varphi \sqrt{2gH}$.
 - 4. В формуле для определения скорости истечения жидкости через отверстие $\upsilon = \phi \sqrt{2gH}$ буквой ϕ обозначается
 - а) коэффициент скорости;
 - б) коэффициент расхода;в) коэффициент сжатия;
 - г) коэффициент истечения.
 - 5. Резкое повышение давления, возникающее в напорном трубопроводе привнезапном торможении рабочей жидкости называется
 - а) гидравлическим ударом; б) гидравлическим напором;в) гидравлическим скачком;г) гидравлический прыжок.
 - 6. Мощность, которая передается от приводного двигателя к валу насоса называется
 - а) полезная мощность;
 - б) подведенная мощность;
 - в) гидравлическая мощность; г) механическая мощность.
- 7. Какие силы называются поверхностными?
 - а) вызванные воздействием объемов, лежащих на поверхности жидкости;
 - б) вызванные воздействием соседних объемов жидкости и воздействием другихтел;

- в) вызванные воздействием давления боковых стенок сосуда;
- г) вызванные воздействием атмосферного давления на поверхность жидкости.
- 8. Жидкость находится под давлением. Что это означает?а) жидкость находится в состоянии покоя;
- б) жидкость течет;
- в) на жидкость действует сила;г) жидкость изменяет форму.
- 9. В каких единицах измеряется давление в системе измерения СИ?а) в паскалях;
- б) в джоулях;в) в барах;
- г) в стоксах.
- 10. Если давление отсчитывают от абсолютного нуля, то его называют:
- а) давление вакуума;
- б) атмосферным; в) избыточным; г) абсолютным.

Промежуточная аттестация по учебной дисциплине проводится в формеэкзамена.

Задание 1

- **1.** Понятие жидкости. Основные физические свойства: плотность, удельный объем, удельный вес, сжимаемость, температурное расширение.
- **2.** Коэффициент гидравлического сопротивления. Методика его определенияпри различных режимах движения.
- 3. Решите задачу:

Необходимо определить динамическую вязкость пресной воды при $t=15^{\circ}$ Спо заданной кинематической вязкости v=1,14мм²/с.

Залание 2

1. Вязкость: понятие вязкости, зависимость от температуры. Законвнутреннего трения Ньютона. Виды вязкости, единицы измерения.

2. Понятие гидростатического напора: пьезометрический напор, полныйгидростатический напор, пьезометрическая и геометрическая высота.

3. Решите задачу:

По вертикальной трубе с установленными на ней на расстоянии h=50м двумя манометрами снизу вверх поддается бензин (ρ =720 кг/ \mathbf{m}^3). Показание нижнего манометра $p_{\mathbf{m}.\mathbf{h}}$ =770кПа, верхнего $p_{\mathbf{m}.\mathbf{b}}$ =400кПа. Необходимо определить гидравлический уклон.

Задание 3

- 1. Приборы для измерения плотности, вязкости и удельного веса.
- 2. Теория Н.Е. Жуковского развития гидроудара. Определение ударного давленияи скорости распространения ударной волны.
- 3. Решите задачу:

Прибор для измерения давления имеет шкалу, градуированную в пределах 0-6 МПа. Тип прибора (Манометр, барометр, вакуумметр) не указан. Требуется определить тип прибора и выяснить, нужно ли его заменить водяным манометром?

Задания 4

- 1. Понятие гидростатического давления, единицы измерения давления. Основ-ные свойства гидростатического давления.
- 2. Понятие кавитации, причины возникновения. Мероприятия по предотвращению кавитации, борьба с эрозией металла.
- 3. Решите задачу:

По трубопроводу (d=0,2м) движется нефтепродукт (v=40мм²/с) с расходом Q=0,01 м³/с. На каком расстоянии от оси трубы необходимо установить трубку Прандтля, чтобы измеряемая ею местная скорость равняласьсредней?

Залание 5

- 1. Основное уравнение гидростатики. Гидростатическое давление в покоящейся жидкости.
- 2. Классификация, назначение и использование ЦБН в нефтяной и газовойпромышленности.
- 3. Решите задачу:

Уксусная кислота в капиллярной трубке поднимается на высоту 30 мм. На какую высоту поднимается эфир в капиллярной трубке, диаметр которой вдвое больше?

Задание 6

- 1. Приборы для измерения давления: механические манометры и вакуумметры, жидкостные приборы, пьезометры.
- 2. Построение характеристики ЦБН. Мощность насоса и КПД.
- 3. Решите задачу:

Определить удельный объем и удельный вес жидкости, если известны ее плотность ρ =910кг/м³, ускорение свободного падения $g = 9.81 \text{ м/c}^2$.

Задание 7

- 1. Давление жидкости на плоские поверхности. Центр давления.
- 2. Трубопроводы, работающие под вакуумом (сифонные трубопроводы). Применение, условия действия, расчет.
- 3. Решите задачу:

Определить условную вязкость 200 см³ жидкости, если известно, что при температуре 50°C время ее истечения через калиброванное отверстие вискозиметра равно 153 с. Водяное число прибора 51 с.

Задание 8

- 1. Давление жидкости на криволинейные поверхности. Горизонтальная ивертикальная составляющая полной силы давления.
- Назначение и классификация трубопроводов.
 Основные задачи припроектировании и расчете трубопроводов.

3. Решите задачу:

Определить гидравлический радиус трубы с внутренним диаметромD=0,412 м, работающей полным сечением.

Задание 9

- 1. Давление струи жидкости на преграду, использование в технике, сила удара.
- 2. Закон Архимеда: условия равновесия при плавании тел.
- 3. Решите задачу:

Определить гидравлический радиус открытого канала шириной b=3 м иглубиной h=1 м.

Задание 10

- 1. Основные понятия и определения гидродинамики: линия тока, трубка тока, живое сечение потока, смоченный периметр, гидравлический радиус.
- 2. Теоретическая и допустимая высота всасывания ЦБН. Кавитационный запас.
- 3. Решите задачу:

Определить высоту, на которую поднимется струя воды, вытекающей из трубопровода вертикально вверх. Линейная скорость воды на выходе из трубопровода 15 м/с. Сопротивлением струи о воздух пренебречь. Коэффициент а принять равным единице.

5. Процедура оценивания знаний и умений, характеризующих этапы формирования компетенций

Оценка знаний, умений, навыков, характеризующих этапы формирования компетенций по дисциплине ОП.16 «Гидравлика» осуществляется в ходе текущего и промежуточного контроля. Текущий контроль организуется в формах: собеседования, тестирования.

Промежуточный контроль осуществляется в форме дифференцированного зачета. Каждая форма промежуточного контроля должна включать в себя теоретические вопросы, позволяющие оценить уровень освоения студентами знаний и практические задания, выявляющие степень сформированности умений и навыков.

Процедура оценивания компетенций обучающихся основана на следующих принципах:

периодичности проведения оценки, многоступечатости оценки по устранению недостатков, единства используемой технологии для всех

обучающихся, выполнения условий сопоставимости результатов оценивания, соблюдения последовательности проведения оценки.

Краткая характеристика процедуры реализации текущего и промежуточного контроля для оценки компетенций обучающихся включает:

доклад, сообщение - продукт самостоятельной работы студента, представляющий собой публичное выступление по представлению полученных результатов решения определенной учебно-практической, учебнонаучной темы. Подготовка осуществляется исследовательской или внеурочное время. На подготовку дается одна неделя. Результаты озвучиваются на втором занятии, регламент- 7 минут на выступление. В оценивании результата наравне с преподавателем принимают участие студенты группы.

устный опрос - устный опрос по основным терминам может проводиться в начале/конце лекционного или семинарского занятия в течение 15-20 мин. Либо устный опрос проводится в течение всего семинарского занятия по заранее выданной тематике.

тест - проводится на заключительном занятии. Позволяет оценить уровень знаний студентами теоретического материала по дисциплине. Осуществляется на бумажных носителей по вариантам. Количество вопросов в каждом варианте-20. Отведенное время на подготовку — 60 мин.

зачет - проводится в заданный срок согласно графику учебного процесса. Зачет проходит в устной форме в виде собеседования по вопросам итогового выставлении результата по зачету контроля. При учитывается приобретенных компетенций студента. Компонент «знать» оценивается теоретическими вопросами по содержанию дисциплины, компоненты «уметь» и практикоориентированными заданиями. Аудиторное время, отведенное студенту на подготовку – 15-20 мин.

Приложение

ключ к тесту 1:

№ вопроса	Правильный
	ответ
1	Γ)
2	б)
3	в)
4	Γ)
5	a)
6	a)
7	б)
8	б)

9	б)
10	Γ)

ключ к тесту 2:

№ вопроса	Правильный ответ
1	б)
2	в)
3	a)
4	a)
5	В)
6	a)
7	6)
8	6)
9	a)
10	г)

ключ к тесту 3:

№ вопроса	Правильный ответ
1	Γ)
2	Γ)
3	B)
4	6)
5	Γ)
6	б)
7	в)
8	Γ)
9	a)
10	a)

ключ к тесту 4:

№ вопроса	Правильный ответ
1	r)
2	a)
3	a)
4	B)
5	r)
6	r)
7	б)
8	r)
9	б)
10	a)

ключ к тесту 5:

№ вопроса	Правильный ответ
1	б)
2	a)
3	в)
4	a)
5	a)
6	B)
7	B)
8	B)
9	a)
10	B)

ключ к тесту 6:

№ вопроса	Правильный ответ
1	в)

2	a)
3	a)
4	в)
5	б)
6	Γ)
7	a)
8	a)
9	в)
10	Γ)

ключ к тесту 7:

№ вопроса	Правильный ответ
1	a)
2	a)
3	Γ)
4	б)
5	Γ)
6	Γ)
7	б)
8	a)
9	a)
10	B)

ключ к тесту 8:

№ вопроса	Правильный ответ
1	в)
2	в)
3	a)
4	Γ)

5	B)
6	Γ)
7	в)
8	Γ)
9	в)
10	a)

ключ к тесту 9:

№ вопроса	Правильный ответ
1	a)
2	б)
3	б)
4	a)
5	в)
6	a)
7	a)
8	a)
9	б)
10	B)

ключ к тесту 10:

№ вопроса	Правильный		
	ответ		
1	a)		
2	г)		
3	г)		
4	a)		
5	a)		

6	б)
7	г)
8	в)
9	a)
10	г)

Решение задач

- 1. Для определения динамической вязкости пресной воды при t=15°C по заданной кинематической вязкости, необходимо умножить значение кинематической вязкости на плотность воды при данной температуре. Плотность пресной воды при t=15°C составляет примерно 999 кг/м³. Таким образом, динамическая вязкость пресной воды при t=15°C будет равна 1,14 * 999 = 1140,86 Па*с.
- 2. Гидравлический уклон равен разности показаний верхнего и нижнего манометров, разделенной на высоту трубы:

 Γ идравлический уклон = (показание верхнего манометра - показание нижнего манометра) / h

 Γ идравлический уклон = $(400 \text{ к}\Pi \text{a} - 770 \text{ к}\Pi \text{a}) / 50 \text{ м}$

Гидравлический уклон = -7,4 кПа/м

- 3. Для определения типа прибора и необходимости замены на водяной манометр необходимо учитывать следующие факты:
 - Манометр используется для измерения давления газа или жидкости внутри закрытых систем.
 - Барометр используется для измерения атмосферного давления.
 - Вакуумметр используется для измерения давления, меньшего атмосферного, вакуума или низкого давления.

Таким образом, для определения типа прибора необходимо знать, какое давление измеряется - газа, жидкости или атмосферное. Также, в случае использования прибора для измерения давления газа или жидкости, необходимо оценить точность измерений и их соответствие требованиям приложения.

Относительно вопроса о замене на водяной манометр, это требует дополнительной информации, такой как особенности среды измерения, потребности точности и уровень износа текущего прибора. Во многих случаях, использование водяного манометра может быть предпочтительным из-за его способности измерять широкий диапазон давлений и хорошей точности. Однако, необходимо учитывать особенности среды и требования технического процесса для принятия окончательного решения.

4. Расстояние от оси трубы, на котором необходимо установить трубку Прандтля, чтобы измеряемая ею местная скорость равнялась средней, можно определить, используя следующую формулу:

$$L = (d/2) * \sqrt{3/2}$$

где L - расстояние от оси трубы, d - диаметр трубы.

Подставляя значения в формулу, получаем:

$$L = (0,2/2) * \sqrt{(3/2)} = 0,1 * \sqrt{(3/2)} \approx 0,0866$$

Таким образом, трубку Прандтля необходимо установить на расстоянии примерно 0,0866 метра (или 8,66 сантиметра) от оси трубы.